Enzymes 8.1 ## MONDAY Review (SL 2.5) - -Enzymes are catalysts: bring about biochemical reactions! - -Optimal environment: affected by pH, temp, and substrate concentration - -Active site to which specific substrate binds #### Understandings: - Metabolic pathways consist of chains and cycles of enzyme-catalysed reactions - Enzymes lower the activation energy of the chemical reactions that they catalyse - Enzyme inhibitors can be competitive or non-competitive - Metabolic pathways can be controlled by end-product inhibition #### Applications: - End-product inhibition of the pathway that converts threonine to isoleucine - Use of databases to identify potential new anti-malarial drugs #### Skills: - Calculating and plotting rates of reaction from raw experimental results - Distinguishing different types of inhibition from graphs at specified substrate concentration # 8.1 U2: Enzymes lower the activation energy of the chemical reactions they catalyze Activation energy = substrate→ product Energy breaks bonds in substrate (lactose → glucose) Enzyme is unchanged and can keep working! 8.1U 3: Enzyme inhibitors can be competitive or noncompetitive Non-competitive: binds to enzyme inhibitors can be competitive or noncompetitive: binds to activation site and substrate can't bind http://www.kscience.co.uk/animations/anim_2.htm Non-competitive: binds to enzyme, not necessarily on activation site and changes shape so substrate can't bind # 8.1S1 Distinguishing different types of inhibition from graphs at specified substrate concentration Simulation 1: normal conditions, low substrate concentration : 20 seconds, 8 pieces of cereal Simulation 2: normal conditions, high substrate concentration :20 seconds, 35 pieces of cereal Simulation 3: competitive inhibition, place a cup over some of your sample, 20 seconds, 35 pieces of cereal Simulation 4: noncompetitive inhibition, one person tapes their thumbs to their hand and can only use their fingers, the other person can compete normally: 20 seconds, 35 pieces # 8.1S1 Distinguishing different types of inhibition from graphs at specified substrate concentration ## Real Life examples Penicillin: competitive inhibition Transpepitase: builds cell walls Binds to active sight, causes permeability <u>Acetylcholine</u>: neurotransmitter involved in muscle activation Acetylcholinesterase: enzymes to promote release in brain Succynl choline: used in anesthesia to relax muscles of patients # TUESDAY 8.1U2: Calculate rates of reaction from raw experimental results Salivary amylase - enzyme in spit that breaks down starch and sugar The human body is normally around 98.7 degrees F and 37 degrees F. Most people's mouths have a pH of 7, while the stomach has a pH of 3. Fever? Hypothermia? Does it work once swallowed into the stomach? (pH of 3) Alkalosis? Occurs when body contains too many bases Is your saliva more effective at digesting than your lab partners? ### Design your own experiment Pick an environmental change to test Potatoes are made of starch → can be broken down by salivary amylase in sugar Use potato solution to test out optimum conditions for salivary amylase Decide on 4 different variations to create in your question MAKE PREDICTIONS Example: 10 degrees, 20 degrees, 30 degrees, 70 degrees Design 2 trials for each variation for a total of 8 test tubes, not including the controls. We will do the controls today: ## How to tell if enzyme is working? Enzyme = saliva (amylase) Substrate = potato (starch) Indicator: Benedicts solution to test for presence of sugar Potato breaks down into sugar Blue → Red when sugar is present (enzyme worked) Under your 4 different variations, use benedict's to test for presence of sugar #### Control Procedures #### **Control Procedure:** - 1. Put ½ a pipet of potato solution into 4 test tubes - 2. Set 2 test tubes in one beaker and label with tape "water" - 3. Set 2 test tubes in one beaker and label with tape "saliva" - 4. Spit 4 mL of your own saliva into one of remaining test tubes. Add 1 mL of *warm* water. - 5. Fill the other test tube with 5mL of warmish water. - 6. Pipet saliva into each of the 2 test tubes containing potato. Stir vigorously. - 7. Pipet water into the other 2 test tubes containing potato. Stir vigorously. - 8. Add one drop of Benedict's reagent to all four test tubes. - 9. Label your tubes with tape - 10. Put in beaker half full of water. - 11. Put in hot water bath until color change occurs (4-10 minutes: record the time!) ## Wednesday #### **GOALS** - 1. Graph the color change over time in your four variations to show rates of reactions (8.1S2) - 2. Clean up after yourself!!!!!! #### **PROCEDURE** - 1. Barely cover the bottom of each of the 8 beakers in potato solution. - 2. Label your test tubes according to your experimental design (2 replications for each variation) - 3. Spit into all test tubes, enough so potato: spit is about 1:1 - 4. If doing pH, add variations at this point (vinegar or baking soda) - 5. Add a whole pipet of Benedict's reagent to all test tubes. - Put in beaker half full of water. - 7. ** If you are doing temperature change, place samples in water baths according to your 4 variations. Let sit for 4 minutes and then put in water bath - 8. Put in hot water bath to start Benedict's test if not doing temp - 9. Record the specific color of each tube every minute for each test tube for 10 minutes. Challenge: by changing just one letter at a time, get from 'TREAD' to 'BLINK'. All intermediates must be real English words. **TREAD** Enzymes lower activation energy by promoting chemical changes in small steps. # 8.1U1 Metabolic pathways consist of chains and cycles of enzyme-catalysed reaction Chemical reactions can't occur in one jump Products of first reaction are substrates in next reaction ### Occurs in cycles or chains Products of first reaction are substrates in next reaction ## 8.1U4 Metabolic pathways can be controlled by endproduct inhibition Product of chain reaction acts as inhibitor to first enzyme in reaction chain Product binds to allosteric site (not on active site) Prevents reaction from starting again Useful to regulate homeostasis $http://highered.mheducation.com/sites/0072943696/student_view0/chapter2/animation_feedback_inhibition_of_biochemical_pathways.html$ # 8.1A1: End-product inhibition of the pathway that converts threonine to isoleucine Threonine (amino acid) enters a chain reaction of enzymes Product (Isoleucine) acts as inhibitor # 8.1A2: Use of databases to identify potential new antimalarial drugs Malaria is caused by mosquitoes that transmit a protozoan into your blood. Attacks red blood cells Often fatal **Bioinformatics** is an approach whereby multiple research groups can add information to a database enabling other groups to query the database. Bioinformatics has facilitated research into metabolic pathways is referred to as Chemogenomics. - Sometimes when a chemical binds to a target site, it can significantly alter metabolic activity. - Massive libraries of chemicals are tested individually on a range of related organisms. - For each organism a range of target sites are identified. - A range of chemicals which are known to work on those sites are tested. Increasing drug resistance to anti-malarial drugs has lead to the use of Bioinformatics and Chemogenomics to try and identify new drugs. - In one study, approx. 300,000 chemicals were screened against a chloroquine-sensitive 3D7 strain and the chloroquine-resistant K1 strain of P. falciparum. - Other related and unrelated organisms, including human cell lines, were also screened. - (19) new chemicals that inhibit the enzymes normally targeted by anti-malarial drugs were identified - Additionally (15) chemicals that bind to malarial proteins were identified - this can help in the location of P. falciparum - These results indicate possible new directions for drug research. internet. Can you explain this graph?