Photosynthesis ...

(From SL) 2.9.U1 Photosynthesis is the production of carbon compounds in cells using light energy.

Photosynthesis using light production

Photosynthesis is a metabolic pathway. Carbon dioxide and along with water is used to produce carbohydrates. Oxygen is released as a waste gas.

n.b. metabolic pathways are controlled by enzymes

Photosynthesis: small picture

Understandings:

- Light-dependent reactions take place in the intermembrane space of the thylakoids
- Light-independent reactions take place in the stroma
- Reduced NADP and ATP are produced in the light-dependent reactions
- · Absorption of light by photosystems generates excited electrons
- · Photolysis of water generates electrons for use in the light-dependent reactions
- Transfer of excited electrons occurs between carriers in thylakoid membranes
- · Excited electrons from Photosystem II are used to contribute to generate a proton gradient
- ATP synthase in thylakoids generates ATP using the proton gradient
- Excited electrons from Photosystem I are used to reduce NADP
- In the light-independent reactions a carboxylase catalyses the carboxylation of ribulose bisphosphate
- Glycerate-3-phosphate is reduced to triose phosphate using reduced NADP and ATP
- Triose phosphate is used to regenerate RuBP and produce carbohydrates
- Ribulose bisphosphate is reformed using ATP
- The structure of the chloroplast is adapted to its function in photosynthesis

8.3U 14 : Structure of chloroplast is adapted to function in photosynthesis

8.3U1 Light dependent rxn: intermembrane of thylakoids

8.3U3 Light independent rxn: stroma

© 2012 Pearson Education, II

1. Light Reaction: Big Picture

8.3U2 Light energy splits water to create a concentration gradient to drive ATP production.

Reactants: photons, water

Products: Reduced NADP and ATP

- Photoactivation- light excites electrons
- 2. Photolysis- splits water
- Electron Transport Chain- transfer of electrons between thylakoid membranes
- 4. ATP synthesis- driven by ETS
- 5. Photophosphorylation- Reduction of NADP http://highered.mheducation.com/olc/dl//20072/biol3.swf

2. Photoactivation

8.3U.4 Photons become concentrated in photosystem II and e- becomes excited!

(2 times) Plastoquinone (Pq)

OUTCOME: chlorophyll is oxidized to drive photolysis

IN: photons

OUT: 4e-, 2 Pq

3. Photolysis = Light + Split

Photolysis: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

Oxygen is waste!

Location: fluid in thylakoids

Chlorophyll has replenished electrons and Pq can begin transporting again

8.3.U.5 Electrons from photolysis drives the rest of photosynthesis

8.3U.6 Location: thylakoid membranes

8.3.U.7 Electrons pass down the chain from PII, creating a proton (H^+) gradient \rightarrow

potential energy

5. ATP Synthesis

8.3U8. ATP Synthase - enzyme that uses protons travelling down concentration gradient to synthesize ATP.

Electron carriers: Used to transfer electrons from one protein to another and create a concentration gradient

$$ADP + P_i \rightarrow ATP$$

Chemiosmosis- Flow of ions through a membrane

 $\underline{http://www.sigmaaldrich.com/life-science/metabolomics/learning-center/metabolic-pathways/atp-synthase \\ \underline{/atp-animation.html}$

6. Reduction of NADP

- PI gets photoactivated activated
- Pass e- to ferrodoxin
- NADP gets reduced → NADPH
- NADPH is necessary for light independent reactions

What are the reactants and products in the light dependent reaction?
Where does it take place?

What are all the moving parts?

http://www.mhhe.com/biosci/bio_animations/02_MH_Photosynthesis_Web/

Light Independent Reaction

- 1. Carbon Fixation
- 2. Reduction
- 3. Regeneration of RuBP

3. Photolysis = Light + Split

Photolysis: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

Oxygen is waste!

Location: fluid in thylakoids

Chlorophyll has replenished electrons and Pq can begin transporting again

8.3.U.5 Electrons from photolysis drives the rest of photosynthesis

http://www.mhhe.com/biosci/bio_animations/02_MH_Photosynthesis_Web

8.3U.6 Location: thylakoid membranes

8.3.U.7 Electrons pass down the chain from PII, creating a proton (H^+) gradient \rightarrow

potential energy

5. ATP Synthesis

8.3U8. ATP Synthase - enzyme that uses protons travelling down concentration gradient to synthesize ATP.

Electron carriers: Used to transfer electrons from one protein to another and create a concentration gradient

 $ADP + P_i \rightarrow ATP$

Chemiosmosis- Flow of ions through a membrane

6. Reduction of NADP

PI gets photoactivated activated

Pass e- to ferrodoxin NADP gets reduced → NADPH

NADPH is necessary for light independent What are the reactants and products in the light dependent reaction?

Where does it take place?

What are all the moving parts?

http://www.mhhe.com/biosci/bio_animations/02_MH_Photosynthesis_Web/

Light Independent Reaction

- 1. Carbon Fixation
- 2. Reduction
- 3. Regeneration of RuBP